Important Notice

In August 1, 2013, PABCO® Gypsum, a division of PABCO® building products, LLC acquired the QuietRock® business and operations from Serious Energy, Inc. Serious Energy, Inc. corporate structure and legal name changed through the years from Quiet Solution, Inc. to Serious Materials, Inc to Serious Energy, Inc. The acquisition of the QuietRock® business by PABCO® Gypsum includes the products, technical data, test reports and other intellectual property. For the avoidance of confusion, references to “Quiet Solution”, “Serious Materials”, or “Serious Energy” used within test reports, in general, should be understood as references to PABCO® Gypsum as of August 1, 2013.
TEST METHOD

Unless otherwise designated, the measurements reported below were made with all facilities and procedures in explicit conformity with the ASTM Designations E90-04 and E413-04, as well as other pertinent standards. Riverbank Acoustical Laboratories has been accredited by the U.S. Department of Commerce, National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP) for this test procedure (NVLAP Lab Code: 100227-0). A description of the measuring technique is available separately.

DESCRIPTION OF THE SPECIMEN

The test specimen was designated by the client as ID 03: QuietRock 510 + 5/8" Type X gypsum, 24" on center steel stud wall with R-13 fiberglass and 5/8" Type X gypsum. The overall dimensions of the specimen as measured were nominally 2.46 m (97 in.) wide by 2.74 m (108 in.) high and 137 mm (5.375 in.) thick. The specimen was installed by the client directly into the laboratory's 2.74 m (9 ft) by 4.27 m (14 ft) wood-lined steel frame. A substantial filler wall was used in the remaining open area. Both the filler wall and test specimen were sealed on the periphery (both sides) with dense mastic.

The description of the specimen was as follows: The wall consisted of 25 gauge steel framing with R-13 fiberglass batt insulation. Both sides of the wall had a layer of 5/8 inch Type X gypsum board. One side was finished with a layer of QuietRock 510 (QR 510). A more detailed description of the wall assembly appears in the sections below.

Track, Studs and Insulation: Two 92 mm (3.625 in.) wide 25 gauge 2.74 m (108 in.) long steel runners were attached to the floor and ceiling with 32 mm (1.25 in.) Type S screws 610 mm (24 in.) on centers. Five (5) 92 mm (3.625 in.) wide 25 gauge 2.73 m (107.5 in.) long steel studs were spaced on 610 mm (24 in.) centers. The end studs were attached to the frame with 32 mm (1.25 in.) long screws spaced on 610 mm (24 in.) centers. All cavities formed by the track and studs were filled with faced R-13 fiberglass insulation measuring 89 mm (3.5 in.) thick. The total weight of the insulation was 9.3 kg (20.5 lbs).
Gypsum Wallboard: On both sides, a layer of 16 mm (0.625 in.) thick Type X gypsum board was applied vertically to the studs. The boards were attached to the studs with #6, 41 mm (1.625 in.) long bugle head drywall screws at 406 mm (16 in.) on centers. On one side, a layer of 13 mm (0.5 in.) thick QR 510 board was applied vertically to the studs. The boards were attached to the studs with #8, 64 mm (2.5 in.) long bugle head drywall screws at 406 mm (16 in.) on centers. Total weight of the gypsum board as measured was 138.8 kg (306 lbs.). Total weight of the QR 510 board as measured was 66.7 kg (147 lbs.). All joints and seams were staggered for each board layer application. Joints were sealed with QuietSeal 350 (QS 350) acoustical caulk and metal taped. Screw heads remained exposed.

The weight of the specimen as measured was 224 kg (495 lbs.), an average of 33.2 kg/m² (6.8 lbs/ft²). The transmission area used in the calculations was 6.7 m² (72.5 ft²). The source and receiving room temperatures at the time of the test were 19±2°C (67±2°F) and 48±2% relative humidity. The source and receive reverberation room volumes were 178 m³ (6,298 ft³) and 177 m³ (6,255 ft³), respectively.
TEST RESULTS

Sound transmission loss values are tabulated at the eighteen standard frequencies. A graphic presentation of the data and additional information appear on the following pages. The precision of the TL test data is within the limits set by the ASTM Standard E90-04.

<table>
<thead>
<tr>
<th>FREQ.</th>
<th>T.L.</th>
<th>C.L.</th>
<th>DEF.</th>
<th>FREQ.</th>
<th>T.L.</th>
<th>C.L.</th>
<th>DEF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>19</td>
<td>1.18</td>
<td></td>
<td>800</td>
<td>57</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>34</td>
<td>0.70</td>
<td>4</td>
<td>1000</td>
<td>57</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>39</td>
<td>0.79</td>
<td>2</td>
<td>1250</td>
<td>58</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>41</td>
<td>0.63</td>
<td>3</td>
<td>1600</td>
<td>58</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>46</td>
<td>0.47</td>
<td>1</td>
<td>2000</td>
<td>54</td>
<td>0.09</td>
<td>4</td>
</tr>
<tr>
<td>315</td>
<td>49</td>
<td>0.30</td>
<td>1</td>
<td>2500</td>
<td>53</td>
<td>0.09</td>
<td>5</td>
</tr>
<tr>
<td>400</td>
<td>51</td>
<td>0.28</td>
<td>2</td>
<td>3150</td>
<td>57</td>
<td>0.08</td>
<td>1</td>
</tr>
<tr>
<td>500</td>
<td>53</td>
<td>0.19</td>
<td>1</td>
<td>4000</td>
<td>59</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>630</td>
<td>55</td>
<td>0.22</td>
<td></td>
<td>5000</td>
<td>62</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>

STC=54

ABBREVIATION INDEX

FREQ. = FREQUENCY, HERTZ, (cps)
T.L. = TRANSMISSION LOSS, dB
C.L. = UNCERTAINTY IN dB, FOR A 95% CONFIDENCE LIMIT
DEF. = DEFICIENCIES, DB<STC CONTOUR (SUM OF DEF = 24)
STC = SOUND TRANSMISSION CLASS

Tested by __________________________ Approved by __________________________
Dean Victor David L. Moyer
Senior Experimentalist Laboratory Manager
STC = 54

TRANSMISSION LOSS

SOUND TRANSMISSION LOSS CONTOUR

FREQUENCY (Hz)

STC = 54

TRANSMISSION LOSS

SOUND TRANSMISSION LOSS CONTOUR