Important Notice

In August 1, 2013, PABCO® Gypsum, a division of PABCO® building products, LLC acquired the QuietRock® business and operations from Serious Energy, Inc. Serious Energy, Inc. corporate structure and legal name changed through the years from Quiet Solution, Inc. to Serious Materials, Inc to Serious Energy, Inc. The acquisition of the QuietRock® business by PABCO® Gypsum includes the products, technical data, test reports and other intellectual property. For the avoidance of confusion, references to “Quiet Solution”, “Serious Materials”, or “Serious Energy” used within test reports, in general, should be understood as references to PABCO® Gypsum as of August 1, 2013.
SOUND TRANSMISSION LOSS TEST REPORT NO. TL06-133 revision 1

CLIENT: Quiet Solution
1250 Elko Drive
Sunnyvale, California 94089

TEST DATE: 20 March 2006

INTRODUCTION
The methods and procedures used for this test conform to the provisions and requirements of ASTM E 90-04, Standard Test Method for Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions. Copies of the test standard are available at www.astm.org. The test chamber source and receiving room volumes are 204 and 148.4 cubic meters respectively. Western Electro-Acoustic Laboratory is accredited by NVLAP (National Voluntary Laboratory Accreditation Program) Lab Code 100256-0 for this test procedure. NVLAP is part of the United States Department of Commerce, National Institute of Standards and Technology (NIST). This test report relates only to the item(s) tested. Any advertising that utilizes this test report or test data must not imply product certification or endorsement by WEAL, NVLAP, NIST or the U.S. Government.

DESCRIPTION OF TEST SPECIMEN
The test specimen was a Quiet Solution QuietRock 510 wall system. The 2 x 4 wood studs were spaced horizontally at 24 inches (610 mm) O.C. and had a single 2 x 4 at the head and sill. The wood stud structure was caulked and screwed directly to the test chamber opening. On the receiving room side, a 1/2 inch (12.7 mm) thick USG gypsum panel was screwed to the studs with drywall screws at 8 inches (203 mm) O.C. on the perimeters and 12 inches (304.8 mm) O.C. in the field. A nominal 1/2 inch (12.7 mm) thick internally damped QuietRock 510 gypsum panel was screwed to the 1/2 inch drywall at 8 inches (203 mm) O.C. on the perimeters and 12 inches (304.8 mm) O.C. in the field. Panel edges and joints were caulked and covered with metal tape. The heads of the screws were covered with metal tape. All drywall was oriented vertically. On the source room side, a 1/2 inch (12.7 mm) thick USG gypsum panel was screwed to the studs with drywall screws at 8 inches (203 mm) O.C. on the perimeters and 12 inches (304.8 mm) O.C. in the field. Panel edges and joints were caulked and covered with metal tape. The heads of the screws were covered with metal tape. All drywall was oriented vertically. Nominal 3-1/2 inch (89 mm) thick Johns Manville R-13 sound insulation batts were installed in the stud space. The overall dimensions of the wall assembly were 144 inches (3.66 m) wide by 96 inches (2.44 m) high by 5 inches (127 mm) thick.

RESULTS OF THE MEASUREMENTS
One-third octave band sound transmission loss values are plotted and tabulated on the attached sheet. ASTM minimum volume requirements are met at 80 Hz and above. The Sound Transmission Class rating determined in accordance with ASTM E 413-04 was STC-47.

Respectfully submitted,
Western Electro-Acoustic Laboratory

Gary E. Mange
Laboratory Manager

Report must be distributed in its entirety except with written authorization from Western Electro-Acoustic Laboratory